موانع موجود در تعیین قیمت سهام به روش شبکه عصبی مصنوعی
Authors
Abstract:
هدف این پژوهش بررسی موانع موجود در تعیین قیمت سهام به روش شبکه عصبی مصنوعی در شرکتهای صنایع فلزی و کانی پذیرفته شده در بورس اوراق بهادار تهران میباشد. در این پژوهش از دو روش تحلیل آماری و شبکه عصبی استفاده شدهاست. در روش تحلیل آماری پرسشنامهای تدوین گردید که بین کارشناسان ارشد بورس اوراق بهادار و اساتید دانشگاه آزاد واحدهای شهر تهران که به مفاهیم شبکه عصبی و پیشبینی قیمت سهام آشنایی کامل دارند، توزیع شد و با استفاده از آزمون t و کای اسکور به بررسی فرضیات پژوهش پرداخته و در نهایت تمام فرضیهها مورد تایید قرار گرفت. مجددا فرضیات پژوهش با استفاده از روش شبکه عصبی پس انتشار خطا و با استفاده از مدل آموزش لورنبرگ – مارکوات مورد بررسی قرار گرفت و مشخص گردید در حالتی که شاخصها بهعنوان ورودی وارد شبکه میگردند پیشبینی قیمت سهام نسبت به حالتی که شاخصها بهعنوان ورودی وارد شبکه نمیگردند، از دقت کافی برخوردار نیست و در عین حال خطای شبکه هم افزایش مییابد. در نهایت نتایج شبکه عصبی با نتایج تحلیل آماری مطابقت دارد به عبارتی در هر دو روش، شاخصها بهعنوان موانعی در پیشبینی قیمت سهام به روش شبکه عصبی تعیین گردیده است.
similar resources
کاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص بازدهی نقدی و قیمت سهام
مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...
full textارزیابی مدلهای شبکه عصبی مصنوعی ایستا و پویا در پیش بینی قیمت سهام
پیشبینی آینده در عرصه پویای اقتصاد و بازارهای مالی از جمله بازار بورس به یکی از مهمترین مسائل درعلوم مالی ارتقاء یافته است. همچنین، در دههی اخیر مدلهای شبکه عصبی به علت عملکرد واقع بینانهتر اینمدلها مورد توجه محققین قرار گرفته و از انواع مختلف آنها برای پیشبینی استفاده شده است. اکنون این سئوالمطرح است که، کدام یک از این مدلها قدرت بالاتری برای تبیین فرآیندهای آتی بورس را دارا میباشد؟ در( همین ر...
full textشناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF
هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران میباشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و دادههای واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا دادههای مربوط به 316 شرکت از نخستین رو...
full textمقایسه قدرت پیش بینی روش شبکه عصبی مصنوعی با سایر روش های پیشبینی: مورد قیمت چغندرقند
این مطالعه با هدف پیشبینی قیمت اسمی و واقعی چغندرقند و مقایسه روش شبکه عصبی مصنوعی با سایر روشها صورت گرفت. پس از بررسی ایستایی سریها، تصادفی بودن متغیرها با استفاده از دو آزمون ناپارامتریک والد- ولفویتز و پارامتریک دوربین- واتسون بررسی شد. براساس نتایج این آزمونها سری قیمت اسمی چغندرقند بهعنوان سری غیرتصادفی و قابل پیشبینی و سری قیمت واقعی بهعنوان سری تصادفی ارزیابی شد. دوره مطالعه نیز ...
full textترکیب شبکه های عصبی برای پیش بینی قیمت سهام
در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...
full textMy Resources
Journal title
volume 6 issue 22
pages 29- 65
publication date 2014-08-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023